ANALISIS PREMI TAHUNAN INDIVIDU DENGAN MANFAAT YANG DIBAYARKAN PADA AKHIR TAHUN KEMATIAN
DOI:
https://doi.org/10.34127/jrakt.v9i1.1157Keywords:
Actuarial Present Value, Gompertz Distribution, Interest RateAbstract
Life insurance is an insurance product that provides guarantees in the form of benefits to the insured's family if the insured dies in the future. The amount of this benefit is influenced by the amount of the annual premium paid by the insurer to the insured. The researcher will calculate the amount of the individual's annual premium on endowment insurance. The researcher will use a fixed interest rate to calculate the discount factor and the Gompertz distribution approach to calculate the insurer's chance of survival. Previously, the researcher will estimate the Gompertz distribution parameters using the Maximum Likelihood Method (MLE) based on the 2011 Indonesian Mortality Table (female). Furthermore, the researcher will calculate the insurer's chance of survival using the Gompertz distribution to obtain the actuarial present value of the initial term annuity and the actuarial present value of the endowment life insurance. In addition, the researcher will calculate the comparison of the present value of the endowment life insurance to the present value of the life annuity. The last step is that the researcher will multiply the comparison of this present value by the benefits received to calculate the amount of the individual's annual premium. The calculation results show that the comparison of the present value of dual-purpose life insurance to the present value of a living annuity is getting smaller as the policy coverage period increases. As a result, the amount of the individual's annual premium will also be smaller. This shows that the amount of the annual premium is influenced by interest rate factors, the insurer's life chances, and the length of the coverage period.
References
A. Elvira Dira, N. Satyahadewi, and H. Perdana INTISARI, “Metode Non-Linear Least Square Pada Distribusi Makeham Dalam Penentuan Nilai Premi Asuransi Jiwa Dwiguna,” Bul. Ilm. Math. Stat. dan Ter., vol. 11, no. 5, pp. 759–766, 2022.
A. R. Effendie, Matematika Aktuaria, 3rd ed. Tangerang Selatan: Universitas Terbuka, 2021.
Anisa and D. P. Sari, “PENENTUAN PREMI BERSIH TAHUNAN ASURANSI JIWA DWIGUNA DENGAN HUKUM DE MOIVRE,” J. Ilm. Mat., vol. 9, no. 2, pp. 437–446, 2021, [Online]. Available: https://media.neliti.com/media/publications/249234-model-infeksi-hiv-dengan-pengaruh-percob-b7e3cd43.pdf
D. N. Trisnawati, I. N. Widana, and K. Jayanegara, “Analisis Komponen Biaya Asuransi Jiwa Dwiguna (Endowment),” J. Mat., vol. 04, no. 1, pp. 1693–1394, 2014.
D. Ratnasari, N. Satyahadewi, and S. M. Intisari, “Penentuan Nilai Tunai Anuitas Jiwa Berjangka Individu Kasus Kontinu Menggunakanmetode Woolhouse,” Bul. Ilm. Math. Stat. dan Ter., vol. 04, no. 3, pp. 217–226, 2015.
Darma Ekawati and Fardinah, “Penentuan Cadangan Premi Asuransi Jiwa Bersama Dwiguna dengan Metode Canadian,” J. Math. Theory Appl., vol. 2, no. 1, pp. 1–4, 2020, doi: 10.31605/jomta.v2i1.748.
F. Maghfiroh and N. Satyahadewi, “Analisis Premi Tunggal Bersih Asuransi Jiwa Dwiguna K-Tahun Unit Link Menggunakan Metode Point To Point Dengan Garansi Minimum Dan Nilai Cap,” Bul. Ilm. Math. Stat. dan Ter., vol. 10, no. 1, pp. 33–42, 2021.
J. LeMaire, N. Bowers, H. Gerber, J. Hickman, D. Jones, and C. Nesbitt, Actuarial Mathematics, vol. 57, no. 2. 1990. doi: 10.2307/253313.
K. P. Romantica, “Analisis probabilitas gagal bayar (problem loans) debitur menggunakan model regresi logistik biner,” JMSAB, vol. 2, no. 2, pp. 155–164, 2019.
N. Andiraja and D. Wahyuni, “Premi Tahunan Asuransi Jiwa Berjangka Dengan Asumsi Seragam Untuk Status Gabungan,” J. Sains Mat. dan Stat., vol. 1, no. 2, p. 83, 2015, doi: 10.24014/jsms.v1i2.1962.
N. D. Khairunnisa, O. Rohaeni, and Y. Permanasari, “Model Perhitungan Premi Asuransi Jiwa Berjangka Secara Diskrit Dan Kontinu,” Pros. Mat., vol. 2, no. 1, pp. 1–7, 2016.
R. Cunningham and T. Herzog, Model for Quantifying Risk, 2nd ed. London: FSA, 2006.
Rakhman and A. . Effendi, Matematika Aktuaria, 1st ed. Tangerang Selatan: Universitas Terbuka, 2019.
S. ARTIKA, I. G. P. PURNABA, and D. C. LESMANA, “Penentuan Premi Asuransi Jiwa Berjangka Menggunakan Model Vasicek Dan Model Cox-Ingersoll-Ross (Cir),” J. Math. Its Appl., vol. 17, no. 2, pp. 129–139, 2018, doi: 10.29244/jmap.17.2.129-139.
S. Fatimah, S. Hadewii, and S. Matha, “Penentuan Nilai Anuitas Jiwa Seumur Hidup Menggunakan Distribusi Gompertz,” Bul. Ilm. Mat.Stat.dan Ter., vol. 78–96, 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.