STRATEGI PEMASARAN PERSONALIZED RECOMMENDATION DALAM MENINGKATKAN RETENSI PELANGGAN

Authors

  • Yeni Yeni Universitas Muhammadiyah Pontianak
  • Damaris Y. Koli Universitas Kristen Artha Wacana
  • Rudy Irwansyah Universitas Muhammadiyah Asahan
  • Alya Elita Sjioen Universitas Kristen Artha Wacana
  • Eva Desembrianita Universitas Muhammadiyah Gresik

DOI:

https://doi.org/10.34127/jrlab.v14i2.1527

Keywords:

Marketing Strategy, Personalized Recommendation, Customer Retention

Abstract

The purpose of this study is to determine the effectiveness of personalized recommendation marketing strategies in increasing customer retention. This research approach collects data through literature studies, which involve reading literature from various sources including books, articles, journals, and reports using qualitative and deductive approaches. The findings in this study are that personalized recommendation marketing strategies have proven effective in increasing customer retention. By using email marketing, website personalization, mobile applications, e-commerce and marketplaces, and social media Ads, companies can build closer relationships with customers, increase loyalty, and extend the customer life cycle in the business ecosystem.

References

Bahri, R. S., & Lahindah, L. (2022). Cross Channel Integration Dalam Meningkatkan Retensi Pelanggan Pada Industri Ritel. Ekonomi, Keuangan, Investasi Dan Syariah (EKUITAS), 3(3), 495–501. https://doi.org/10.47065/ekuitas.v3i3.1220

Bastani, H., Harsha, P., Perakis, G., & Singhvi, D. (2022). Learning Personalized Product Recommendations with Customer Disengagement. Manufacturing and Service Operations Management, 24(4), 2010–2028. https://doi.org/10.1287/msom.2021.1047

Basu, S. (2021). Personalized product recommendations and firm performance. Electronic Commerce Research and Applications, 48. https://doi.org/10.1016/j.elerap.2021.101074

Buvaneswari, N., & Bose, S. (2016). Comprehensive personalized recommendation technologies. 2016 International Conference on Recent Trends in Information Technology, ICRTIT 2016. https://doi.org/10.1109/ICRTIT.2016.7569555

Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. Psychology and Marketing, 39(8), 1529–1562. https://doi.org/10.1002/mar.21670

Djatnika, T. (2019). Manajemen Hubungan Pelanggan, Pengaruhnya terhadap Retensi Pelanggan pada Unit Usaha Koperasi Simpan-Pinjam (CRM, and Its Impact on Customer Retention at a Credit Union). Jurusan Administrasi Niaga, Politeknik Negeri Bandung (POLBAN), 1016–1025. https://doi.org/https://doi.org/10.35313/irwns.v10i1.1457

Fitriyani, I. P., & Hendriyani, C. (2021). Implementasi Customer Data Management Dalam Meningkatkan Retensi Pelanggan IndiHome di PT Telkom. ICIT Journal, 7(2), 168–176. https://doi.org/10.33050/icit.v7i2.1645

Hurriyati, R., & Widiastuti, I. (2008). Pengaruh Pemasaran Eksperiensial Terhadap Retensi Pelanggan Pada Pengunjung Resort&Spa Kampung Sampireun Garut. Strategic : Jurnal Pendidikan Manajemen Bisnis, 8(1), 1. https://doi.org/10.17509/strategic.v8i1.995

Lampus, J. M., Worang, F. G., Palandeng, I. D., Palandeng, I. D., Lampus, J. M., Worang, F. G., & Palandeng, I. D. (2024). Pelanggan Pada Indrive Di Kota Manado The Influence Of Customer Experience And Brand Equity On Customer Retention At Indrive In Manado City Jurnal EMBA Vol . 12 No . 3 Juli 2024 , Hal . 702-713. 12(3), 702–713. https://doi.org/https://doi.org/10.35794/emba.v12i03.57600

Li, D., & Yang, X. (2024). Evaluation and improvement of personalized recommendation system in low-carbon network marketing. International Journal of Low-Carbon Technologies, 19(November), 2831–2838. https://doi.org/10.1093/ijlct/ctae252

Liang, T. P., Yang, Y. F., Chen, D. N., & Ku, Y. C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401–412. https://doi.org/10.1016/j.dss.2007.05.004

Ovid, B., Panjaitan, A., Farida, N., & Listyorini, S. (2015). Pengaruh Reputasi Perusahaan dan Kualitas Pelayanan terhadap Retensi Pelanggan dengan Kepuasan sebagai Variabel Intervening pada Maskapai Penerbangan Sriwijaya Air Semarang. Jurnal Ilmu Administrasi Bisnis. https://doi.org/https://doi.org/10.14710/jiab.2015.7230

Renjith, S. (2015). An Integrated Framework to Recommend Personalized Retention Actions to Control B2C E-Commerce Customer Churn. International Journal of Engineering Trends and Technology, 27(3), 152–157. https://doi.org/10.14445/22315381/ijett-v27p227

Rorah, I. R. C., Poluan, M., Paath, F., & Wongkar, M. (2022). Analisis Penetrasi Pasar dan Pengembangan Pasar terhadap retensi Pelanggan oleh Petani Cabe Keriting di Kelurahan Kakaskasen I dan Kakaskasen II Kecamatan Tomohon Utara Kota Tomohon Propinsi Sulawesi Utara. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 9(3), 1335–1347. https://doi.org/10.35794/jmbi.v9i3.44261

Sinambela, E. A., Retnowati, E., Ernawati, E., Lestari, U. P., & Munir, M. (2022). Pengaruh Kualitas Layanan Dan Citra Perusahaan Terhadap Retensi Pelanggan Bengkel Resmi Honda Surabaya. Jurnal Baruna Horizon, 5(1), 17–25. https://doi.org/10.52310/jbhorizon.v5i1.73

Sulistiani, F., & Farida, N. (2016). Pengaruh Kepercayaan, Komitmen dan Komunikasi Terhadap Kepuasan Pelanggan Dengan Retensi Pelanggan Sebagai Variabel Intervening. Diponegoro Journal of Social and Political of Science Tahun, 1–10. https://doi.org/https://doi.org/10.14710/jiab.2016.10292

Tarifi, N., & Bakhsh, R. (2024). The Effectiveness of Personalized Marketing Strategies on Consumer Engagement and Loyalty (Evidence from KSA). International Journal of Research and Studies Publishing, 5(56), 283–302. https://doi.org/10.52133/ijrsp.v5.56.11

Wang, C., Zheng, Y., Jiang, J., & Ren, K. (2018). Toward Privacy-Preserving Personalized Recommendation Services. Engineering, 4(1), 21–28. https://doi.org/10.1016/j.eng.2018.02.005

Wang, W., Han, X., Ma, Y., & Li, G. (2024). Personalized Recommendation in a Retail Platform Under the Hybrid Selling Mode. Journal of Theoretical and Applied Electronic Commerce Research , 19(4), 3606–3631. https://doi.org/10.3390/jtaer19040175

Wang, X. (2020). Personalized recommendation framework design for online tourism: know you better than yourself. Industrial Management and Data Systems, 120(11), 2067–2079. https://doi.org/10.1108/IMDS-05-2020-0278

Xu, L., & Sang, X. (2022). E-Commerce Online Shopping Platform Recommendation Model Based on Integrated Personalized Recommendation. Scientific Programming, 2022. https://doi.org/10.1155/2022/4823828

Downloads

Published

2025-05-28